Enter a problem...
Linear Algebra Examples
[4012324904]⎡⎢⎣4012324904⎤⎥⎦
Step 1
Set up the formula to find the characteristic equation p(λ)p(λ).
p(λ)=determinant(A-λI3)p(λ)=determinant(A−λI3)
Step 2
The identity matrix or unit matrix of size 33 is the 3×33×3 square matrix with ones on the main diagonal and zeros elsewhere.
[100010001]⎡⎢⎣100010001⎤⎥⎦
Step 3
Step 3.1
Substitute [4012324904]⎡⎢⎣4012324904⎤⎥⎦ for AA.
p(λ)=determinant([4012324904]-λI3)p(λ)=determinant⎛⎜⎝⎡⎢⎣4012324904⎤⎥⎦−λI3⎞⎟⎠
Step 3.2
Substitute [100010001]⎡⎢⎣100010001⎤⎥⎦ for I3I3.
p(λ)=determinant([4012324904]-λ[100010001])p(λ)=determinant⎛⎜⎝⎡⎢⎣4012324904⎤⎥⎦−λ⎡⎢⎣100010001⎤⎥⎦⎞⎟⎠
p(λ)=determinant([4012324904]-λ[100010001])p(λ)=determinant⎛⎜⎝⎡⎢⎣4012324904⎤⎥⎦−λ⎡⎢⎣100010001⎤⎥⎦⎞⎟⎠
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply -λ−λ by each element of the matrix.
p(λ)=determinant([4012324904]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣4012324904⎤⎥⎦+⎡⎢⎣−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2
Simplify each element in the matrix.
Step 4.1.2.1
Multiply -1−1 by 11.
p(λ)=determinant([4012324904]+[-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣4012324904⎤⎥⎦+⎡⎢⎣−λ−λ⋅0−λ⋅0−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.2
Multiply -λ⋅0.
Step 4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([4012324904]+[-λ0λ-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([4012324904]+[-λ0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([4012324904]+[-λ0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.3
Multiply -λ⋅0.
Step 4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([4012324904]+[-λ00λ-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([4012324904]+[-λ00-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([4012324904]+[-λ00-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.4
Multiply -λ⋅0.
Step 4.1.2.4.1
Multiply 0 by -1.
p(λ)=determinant([4012324904]+[-λ000λ-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.4.2
Multiply 0 by λ.
p(λ)=determinant([4012324904]+[-λ000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([4012324904]+[-λ000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.5
Multiply -1 by 1.
p(λ)=determinant([4012324904]+[-λ000-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.6
Multiply -λ⋅0.
Step 4.1.2.6.1
Multiply 0 by -1.
p(λ)=determinant([4012324904]+[-λ000-λ0λ-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.6.2
Multiply 0 by λ.
p(λ)=determinant([4012324904]+[-λ000-λ0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([4012324904]+[-λ000-λ0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.7
Multiply -λ⋅0.
Step 4.1.2.7.1
Multiply 0 by -1.
p(λ)=determinant([4012324904]+[-λ000-λ00λ-λ⋅0-λ⋅1])
Step 4.1.2.7.2
Multiply 0 by λ.
p(λ)=determinant([4012324904]+[-λ000-λ00-λ⋅0-λ⋅1])
p(λ)=determinant([4012324904]+[-λ000-λ00-λ⋅0-λ⋅1])
Step 4.1.2.8
Multiply -λ⋅0.
Step 4.1.2.8.1
Multiply 0 by -1.
p(λ)=determinant([4012324904]+[-λ000-λ000λ-λ⋅1])
Step 4.1.2.8.2
Multiply 0 by λ.
p(λ)=determinant([4012324904]+[-λ000-λ000-λ⋅1])
p(λ)=determinant([4012324904]+[-λ000-λ000-λ⋅1])
Step 4.1.2.9
Multiply -1 by 1.
p(λ)=determinant([4012324904]+[-λ000-λ000-λ])
p(λ)=determinant([4012324904]+[-λ000-λ000-λ])
p(λ)=determinant([4012324904]+[-λ000-λ000-λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[4-λ0+01+02+03-λ2+049+00+04-λ]
Step 4.3
Simplify each element.
Step 4.3.1
Add 0 and 0.
p(λ)=determinant[4-λ01+02+03-λ2+049+00+04-λ]
Step 4.3.2
Add 1 and 0.
p(λ)=determinant[4-λ012+03-λ2+049+00+04-λ]
Step 4.3.3
Add 2 and 0.
p(λ)=determinant[4-λ0123-λ2+049+00+04-λ]
Step 4.3.4
Add 2 and 0.
p(λ)=determinant[4-λ0123-λ249+00+04-λ]
Step 4.3.5
Add 49 and 0.
p(λ)=determinant[4-λ0123-λ2490+04-λ]
Step 4.3.6
Add 0 and 0.
p(λ)=determinant[4-λ0123-λ24904-λ]
p(λ)=determinant[4-λ0123-λ24904-λ]
p(λ)=determinant[4-λ0123-λ24904-λ]
Step 5
Step 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 2 by its cofactor and add.
Step 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.1.3
The minor for a12 is the determinant with row 1 and column 2 deleted.
|22494-λ|
Step 5.1.4
Multiply element a12 by its cofactor.
0|22494-λ|
Step 5.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|4-λ1494-λ|
Step 5.1.6
Multiply element a22 by its cofactor.
(3-λ)|4-λ1494-λ|
Step 5.1.7
The minor for a32 is the determinant with row 3 and column 2 deleted.
|4-λ122|
Step 5.1.8
Multiply element a32 by its cofactor.
0|4-λ122|
Step 5.1.9
Add the terms together.
p(λ)=0|22494-λ|+(3-λ)|4-λ1494-λ|+0|4-λ122|
p(λ)=0|22494-λ|+(3-λ)|4-λ1494-λ|+0|4-λ122|
Step 5.2
Multiply 0 by |22494-λ|.
p(λ)=0+(3-λ)|4-λ1494-λ|+0|4-λ122|
Step 5.3
Multiply 0 by |4-λ122|.
p(λ)=0+(3-λ)|4-λ1494-λ|+0
Step 5.4
Evaluate |4-λ1494-λ|.
Step 5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=0+(3-λ)((4-λ)(4-λ)-49⋅1)+0
Step 5.4.2
Simplify the determinant.
Step 5.4.2.1
Simplify each term.
Step 5.4.2.1.1
Expand (4-λ)(4-λ) using the FOIL Method.
Step 5.4.2.1.1.1
Apply the distributive property.
p(λ)=0+(3-λ)(4(4-λ)-λ(4-λ)-49⋅1)+0
Step 5.4.2.1.1.2
Apply the distributive property.
p(λ)=0+(3-λ)(4⋅4+4(-λ)-λ(4-λ)-49⋅1)+0
Step 5.4.2.1.1.3
Apply the distributive property.
p(λ)=0+(3-λ)(4⋅4+4(-λ)-λ⋅4-λ(-λ)-49⋅1)+0
p(λ)=0+(3-λ)(4⋅4+4(-λ)-λ⋅4-λ(-λ)-49⋅1)+0
Step 5.4.2.1.2
Simplify and combine like terms.
Step 5.4.2.1.2.1
Simplify each term.
Step 5.4.2.1.2.1.1
Multiply 4 by 4.
p(λ)=0+(3-λ)(16+4(-λ)-λ⋅4-λ(-λ)-49⋅1)+0
Step 5.4.2.1.2.1.2
Multiply -1 by 4.
p(λ)=0+(3-λ)(16-4λ-λ⋅4-λ(-λ)-49⋅1)+0
Step 5.4.2.1.2.1.3
Multiply 4 by -1.
p(λ)=0+(3-λ)(16-4λ-4λ-λ(-λ)-49⋅1)+0
Step 5.4.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=0+(3-λ)(16-4λ-4λ-1⋅-1λ⋅λ-49⋅1)+0
Step 5.4.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Step 5.4.2.1.2.1.5.1
Move λ.
p(λ)=0+(3-λ)(16-4λ-4λ-1⋅-1(λ⋅λ)-49⋅1)+0
Step 5.4.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=0+(3-λ)(16-4λ-4λ-1⋅-1λ2-49⋅1)+0
p(λ)=0+(3-λ)(16-4λ-4λ-1⋅-1λ2-49⋅1)+0
Step 5.4.2.1.2.1.6
Multiply -1 by -1.
p(λ)=0+(3-λ)(16-4λ-4λ+1λ2-49⋅1)+0
Step 5.4.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=0+(3-λ)(16-4λ-4λ+λ2-49⋅1)+0
p(λ)=0+(3-λ)(16-4λ-4λ+λ2-49⋅1)+0
Step 5.4.2.1.2.2
Subtract 4λ from -4λ.
p(λ)=0+(3-λ)(16-8λ+λ2-49⋅1)+0
p(λ)=0+(3-λ)(16-8λ+λ2-49⋅1)+0
Step 5.4.2.1.3
Multiply -49 by 1.
p(λ)=0+(3-λ)(16-8λ+λ2-49)+0
p(λ)=0+(3-λ)(16-8λ+λ2-49)+0
Step 5.4.2.2
Subtract 49 from 16.
p(λ)=0+(3-λ)(-8λ+λ2-33)+0
Step 5.4.2.3
Reorder -8λ and λ2.
p(λ)=0+(3-λ)(λ2-8λ-33)+0
p(λ)=0+(3-λ)(λ2-8λ-33)+0
p(λ)=0+(3-λ)(λ2-8λ-33)+0
Step 5.5
Simplify the determinant.
Step 5.5.1
Combine the opposite terms in 0+(3-λ)(λ2-8λ-33)+0.
Step 5.5.1.1
Add 0 and (3-λ)(λ2-8λ-33).
p(λ)=(3-λ)(λ2-8λ-33)+0
Step 5.5.1.2
Add (3-λ)(λ2-8λ-33) and 0.
p(λ)=(3-λ)(λ2-8λ-33)
p(λ)=(3-λ)(λ2-8λ-33)
Step 5.5.2
Expand (3-λ)(λ2-8λ-33) by multiplying each term in the first expression by each term in the second expression.
p(λ)=3λ2+3(-8λ)+3⋅-33-λ⋅λ2-λ(-8λ)-λ⋅-33
Step 5.5.3
Simplify each term.
Step 5.5.3.1
Multiply -8 by 3.
p(λ)=3λ2-24λ+3⋅-33-λ⋅λ2-λ(-8λ)-λ⋅-33
Step 5.5.3.2
Multiply 3 by -33.
p(λ)=3λ2-24λ-99-λ⋅λ2-λ(-8λ)-λ⋅-33
Step 5.5.3.3
Multiply λ by λ2 by adding the exponents.
Step 5.5.3.3.1
Move λ2.
p(λ)=3λ2-24λ-99-(λ2λ)-λ(-8λ)-λ⋅-33
Step 5.5.3.3.2
Multiply λ2 by λ.
Step 5.5.3.3.2.1
Raise λ to the power of 1.
p(λ)=3λ2-24λ-99-(λ2λ1)-λ(-8λ)-λ⋅-33
Step 5.5.3.3.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=3λ2-24λ-99-λ2+1-λ(-8λ)-λ⋅-33
p(λ)=3λ2-24λ-99-λ2+1-λ(-8λ)-λ⋅-33
Step 5.5.3.3.3
Add 2 and 1.
p(λ)=3λ2-24λ-99-λ3-λ(-8λ)-λ⋅-33
p(λ)=3λ2-24λ-99-λ3-λ(-8λ)-λ⋅-33
Step 5.5.3.4
Rewrite using the commutative property of multiplication.
p(λ)=3λ2-24λ-99-λ3-1⋅-8λ⋅λ-λ⋅-33
Step 5.5.3.5
Multiply λ by λ by adding the exponents.
Step 5.5.3.5.1
Move λ.
p(λ)=3λ2-24λ-99-λ3-1⋅-8(λ⋅λ)-λ⋅-33
Step 5.5.3.5.2
Multiply λ by λ.
p(λ)=3λ2-24λ-99-λ3-1⋅-8λ2-λ⋅-33
p(λ)=3λ2-24λ-99-λ3-1⋅-8λ2-λ⋅-33
Step 5.5.3.6
Multiply -1 by -8.
p(λ)=3λ2-24λ-99-λ3+8λ2-λ⋅-33
Step 5.5.3.7
Multiply -33 by -1.
p(λ)=3λ2-24λ-99-λ3+8λ2+33λ
p(λ)=3λ2-24λ-99-λ3+8λ2+33λ
Step 5.5.4
Add 3λ2 and 8λ2.
p(λ)=11λ2-24λ-99-λ3+33λ
Step 5.5.5
Add -24λ and 33λ.
p(λ)=11λ2+9λ-99-λ3
Step 5.5.6
Move -99.
p(λ)=11λ2+9λ-λ3-99
Step 5.5.7
Move 9λ.
p(λ)=11λ2-λ3+9λ-99
Step 5.5.8
Reorder 11λ2 and -λ3.
p(λ)=-λ3+11λ2+9λ-99
p(λ)=-λ3+11λ2+9λ-99
p(λ)=-λ3+11λ2+9λ-99
Step 6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
-λ3+11λ2+9λ-99=0
Step 7
Step 7.1
Factor the left side of the equation.
Step 7.1.1
Factor out the greatest common factor from each group.
Step 7.1.1.1
Group the first two terms and the last two terms.
(-λ3+11λ2)+9λ-99=0
Step 7.1.1.2
Factor out the greatest common factor (GCF) from each group.
λ2(-λ+11)-9(-λ+11)=0
λ2(-λ+11)-9(-λ+11)=0
Step 7.1.2
Factor the polynomial by factoring out the greatest common factor, -λ+11.
(-λ+11)(λ2-9)=0
Step 7.1.3
Rewrite 9 as 32.
(-λ+11)(λ2-32)=0
Step 7.1.4
Factor.
Step 7.1.4.1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=λ and b=3.
(-λ+11)((λ+3)(λ-3))=0
Step 7.1.4.2
Remove unnecessary parentheses.
(-λ+11)(λ+3)(λ-3)=0
(-λ+11)(λ+3)(λ-3)=0
(-λ+11)(λ+3)(λ-3)=0
Step 7.2
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
-λ+11=0
λ+3=0
λ-3=0
Step 7.3
Set -λ+11 equal to 0 and solve for λ.
Step 7.3.1
Set -λ+11 equal to 0.
-λ+11=0
Step 7.3.2
Solve -λ+11=0 for λ.
Step 7.3.2.1
Subtract 11 from both sides of the equation.
-λ=-11
Step 7.3.2.2
Divide each term in -λ=-11 by -1 and simplify.
Step 7.3.2.2.1
Divide each term in -λ=-11 by -1.
-λ-1=-11-1
Step 7.3.2.2.2
Simplify the left side.
Step 7.3.2.2.2.1
Dividing two negative values results in a positive value.
λ1=-11-1
Step 7.3.2.2.2.2
Divide λ by 1.
λ=-11-1
λ=-11-1
Step 7.3.2.2.3
Simplify the right side.
Step 7.3.2.2.3.1
Divide -11 by -1.
λ=11
λ=11
λ=11
λ=11
λ=11
Step 7.4
Set λ+3 equal to 0 and solve for λ.
Step 7.4.1
Set λ+3 equal to 0.
λ+3=0
Step 7.4.2
Subtract 3 from both sides of the equation.
λ=-3
λ=-3
Step 7.5
Set λ-3 equal to 0 and solve for λ.
Step 7.5.1
Set λ-3 equal to 0.
λ-3=0
Step 7.5.2
Add 3 to both sides of the equation.
λ=3
λ=3
Step 7.6
The final solution is all the values that make (-λ+11)(λ+3)(λ-3)=0 true.
λ=11,-3,3
λ=11,-3,3